
JournalofGlobal Optimization 8: 35-48, 1996. 35
(~) 1996 Kluwer Academic Publishers. Printed in the Netherlands.

Tabu Search for the Planar Three-Index Assignment
Problem*

D. MAGOS*
Department of lnformatics, Athens School of Economics and Business, 76 Patission Str., Athens 104
34, Greece. Tel." 01-8225268, E-mail: nnk@aueb.ariadne-t.gr

(Received: 8 April 1993; accepted: 23 June 1995)

Abstract. Tabu Search is a very effective method for approximately solving hard combinatorial prob-
lems. In the current work we implement Tabu Search for solving the Planar Three-Index Assignment
Problem. The problem deals with finding the minimum cost assignment between elements of three dis-
tinct sets demanding that every pair of elements, each representing a different set, appears in the same
solution exactly once. The solutions of the problems correspond to Latin squares. These structures
form the basis of the move generation mechanism employed by the Tabu Search procedures. Standard
Tabu Search ideas such as candidate move list, variable tabu list size, and frequency-based memory
are tested. Computational results for a range of problems of varying dimensions are presented.

Key words: Combinatorial optimization, three-index assignment, tabu search, Latin square.

1. Introduction

The planar three-index ass ignment problem (PP3) can be thought of as a variation
of the min - sum ass ignment p rob lem with three sets of elements instead of two:
given three disjoint n-sets I = { 1, ..., n}, J = { 1, ..., n}, K = { 1, ..., n} consider

the set A = { (i , j , k) l (i , j , k) E l x J x K } and a cost cijk attached to each e lement
of A. An assignment is defined as a set Ay, Ay C A, with the property that each
pair of indices, each representing a different set, appears in exactly one triplet of

A S. P P 3 deals with finding the ass ignment of minimal total cost. P P 3 can be stated
as a 0 -1 p rog ramming problem as

m i n ~ Z ~ CijkXijk
iEI jEJkEK

s.t.

xijk = lV j E J , k E K (1)
iEI

* Preferred corresponding address: 30 Theodorou Geometrou Str., Neos Kosmos, Athens 117 43,
Greece

36 D. MAGOS

x~jk = 1Vi E I , k E K (2)
jEJ

xijk = 1,Vi E I , j E J (3)
kEK

x jk c {0, 1}, v(i , j , k) E I × J ×

The closest relative of PP3 is the axial three-index assignment problem (AP3)
(Balas and Saltzman, 1991). Both problems minimize over the same function but
in the case of AP3 the assignment is defined with respect to the property that each
element of the sets I , J, K appears in exactly one triplet of Ay.

PP3 is closely related to the solid (multi-index) transportation problem (Haley,
1962) in which the right-hand sides of the constraints are positive constants, the
sets I , J, K are not equal in size and the integrality constraints on the variables are
relaxed. There are additional constraints, imposed on the right-hand side constants,
that correspond to the constraint that equates total demand and total supply for the
transportation problem.

It is obvious that PP3 is a special case of the set partitioning problem (SPP):
{min c x l A x = e, x binary), where A is a matrix of zeros and ones and e is a
vector of ones.

PP3 has several applications with respect to scheduling and timetabling prob-
lems. Consider n teachers, n classes and n time periods. A schedule is a set of
triplets (i, j , k) that assigns in each time period exactly one teacher to one class
and vice versa, so that after n periods every teacher has taught in every class. Let
Cijk be a satisfaction value associated with the assignment of teacher i to class j
during time period k. We seek the schedule that maximizes/minimizes the total
satisfaction. A special case where cijk equals 0 or 1 is proven NP-complete in
(Frieze, 1983).

Another application concerns the schedule of meetings between buyers and
sellers during conventions. A tourism industry convention scheduling problem of
such kind is presented in Gilbert and Hofstra (1987).

Only a limited amount of literature refers to PP3. Exact algorithms for the
problem have been developed by M. Vlach (1967) and recently by D. Magos
and R Miliotis (1994). Theoretical work includes the paper of Burkard and Frol-
ich on admissible transformations (1980), whereas some classes of facet-defining
inequalities for the problem are presented in Euler et al. (1986).

In the current work we present algorithms for PP3 based on Tabu Search tech-
nique (TS). The method was first introduced by Glover as an intelligent search
technique to overcome local optimality (1989, 1990). TS has been successfully
employed in a large collection of applications and has been proven very effec-
tive for handling difficult problems (Glover and Laguna, 1993). It has also been
successfully combined with other search techniques in the framework of hybrid
algorithms (Areibi and Vannelli, 1994, Laguna and Glover, 1993b, Osman, 1993).

SEARCH FOR THE PLANAR THREE-INDEX ASSIGNMENT PROBLEM 37

To our knowledge this is the first time that TS is applied to PP3. The basic ideas
of TS are sketched in Section 2. In Section 3 we examine the structure of feasible
solutions of PP3 and discuss moves that transition between solutions. The specifics
of the procedures implemented are discussed in Section 4. Computational results
are illustrated and discussed in Section 5.

2. The Tabu Search Technique

Tabu Search is an iterative method used for finding, in a set X of feasible solutions,
the solution that minimizes an objective function f . Before describing the procedure
we introduce the necessary definitions.

A move ~ consists of a mapping defined on a subset X(~) of X : s : X(. s)~X
(Glover, 1989). In practise 8 can be considered as a sequence of operations that, if
applied, transition from one solution to another. We implicitly refer to the neighbor
solution produced by applying move ~ to a solution x as ~(x). We denote S(x)
the set of moves that can be applied to solution x. The move that cancels .s
is n o t e d 8-1(8-1(8(x)) = z) . The value of a move, noted v(8), is defined as

f (8 (x)) - f(x).
TS starts with an initial solution. At each iteration a set of moves is considered.

The move with the smallest value is applied to the current solution. The new
solution is adopted and the algorithm proceeds to the next iteration. In order to
avoid being trapped at a local optimum only a subset of S(x) is considered at each
iteration. More precisely, a so-called tabu list T of length I T I = m (fixed or
variable) is used to store moves that are forbidden (i.e. tabu). T stores the s - l of
the last m moves applied. The search is confined to selecting a move from the set
S(x) - T, preserving thus the effects of the m most recent moves applied. T is
updated circularly. When a move s is selected s-1 enters the list, while the oldest
entry is removed.

The tabu mechanism may sometimes be very restrictive. This may have unde-
sirable effects, such as missing local optima or confining the search to solutions
of great structural similarity. Situations like these are dealt with through the use of
aspiration criteria. When satisfied, an aspiration criterion cancels the tabu status of
a move, thus making the move available for selection. Evidently, such a criterion
must be used with caution so as to minimize the possibility of cycling. Several
aspiration criteria have been proposed in the literature (Glover and Laguna, 1993).
We consider the following two as part of any tabu search procedure. The first
selects the "least tabu" move if all candidate moves are tabu at an iteration. The
term "least tabu" usually refers to the move that is scheduled to leave the tabu list
first. The second criterion selects a tabu move s if f(s(x)) < f(xbe~t), where x b~
denotes the incumbent (i.e. the best solution found so far).

The procedure in mock Pascal follows. Text in {} is commentary.

3 8 D. MAGOS

TABLE I. A Feasible Solution

Latin square Variables set- to-one

i / j 1 2 3 4

1 2 3 4 1 x112 X123 X134 XI41

2 4 2 1 3 X214 X222 X231 X243

3 3 1 2 4 X313 X321 X332 X344

4 1 4 3 2 x411 x424 x433 x442

2.1. TABU SEARCH

find an initial solution x;

X best -= X;

while stopping criterion not satisfied do
begin
solve (min v(s), s.t :sES(x) - T or f (s (x)) < f(xb~st));
{let s*} denote the solution to the previous problem)
update T;
if f (s*(x)) < f (x b¢st) then x best = s*(x);
x = s*(x);

end
The stopping criterion is usually implemented as an elapsed number of iterations

either in total or since X best w a s last improved.
The tabu list constitutes a type of short-term memory which stores information

on the m most recent moves. However, this does not always achieve a thorough
exploration of the solutions' space. In many TS implementations short-term memo-
ry is complemented with intermediate- and/or long-term memory. The longer-term
memory structures accumulate information on solutions visited over a long period
of iterations. The search is conducted in stages. Initially, only short-term memory
is used. Longer-term memory structures collect information that is utilized in the
next stage, where the search is diversified to regions where improved solutions can
be found. Additionally, longer-term memory can be used to intensify the search in
regions where high quality local optima lie. After the termination of the intensifica-
tion and/or diversification phase the search continues making use of the short-term
memory only. The procedure is repeated until a stopping criterion is satisfied. Prac-
tical experience shows that long-term memory plays an important role in obtaining
best solutions for hard problems.

3. The Structure of a Feasible So lut ion

Every solution of PP3 corresponds to a Latin square and vice versa (Euler et al.,
1986). The square consists of n 2 cells, each with a pair of indices as co-ordinates

SEARCH FOR THE PLANAR THREE-INDEX ASSIGNMENT PROBLEM

TABLE II. Known values of 1,~

In [2 [3 [4 [5 [6 [7 I
[l~ I 1 [1 I 4 I 56 I 9408 [16,942,080 I

TABLE III.

i / j
1

2

3

4

The new Latin Square
1 2 3 4
2 3 4 1
4 1(2) 2(1) 3
3 2(1) 1(2) 4
1 4 3 2

Variables
One Zero
x221 X222
X322 x321
x331 x332
X232 X231

39

(row, column) and the index of the third set as content. Without loss of generality
we consider i as the row index, j as the column index, and k as the content
index. A feasible solution to an order-4 problem, both in variable-set-to-one and
Latin-square format, is presented in Table I.

This one-to-one correspondence between Latin squares and feasible solutions
allows us to calculate the number of feasible solutions. The number of Latin squares
of order-n is l,~- n! . (n - 1) !. The known l,~ values are illustrated in Table II (Ryser,
1963).

The Latin-square structure of the solutions facilitates the production of the
neighbor solutions. Moves take as input a Latin square (current solution) and gen-
erate other Latin squares (neighbor solutions). More specifically, a move consists
of changing the content of a cell and then restoring the Latin-square structure by
imposing further changes on the contents of other cells. For the Latin square of
Table I, namely L 1, consider changing the content of cell (2,2), noted k(2,2), from
2 to 1. Clearly the solution is now infeasible. Feasibility can be restored through
a unique chain of changes in the contents of certain cells. We search rowwise to
change a 1 to 2 and columnwise to change a 2 to 1. The move is completed when
we reach a cell in the same row with the starting cell. The cells affected by the move
are ((2,2), (3,2), (3,3), (2,3)). In Table III the new Latin square (L2) is illustrated.
The old cell contents are included in brackets. The corresponding variables that are
set to one and zero by the move are also illustrated.

The value of a move v(s) is calculated with respect to the eijk co-efficients of
the variables affected by the move. The rest of the variables maintain the same
value in both solutions, therefore they do not contribute to v(s). The value of the
move described is

V(8) = C222 qt_ C321 _~_ C332 q_ C231 __ C221 __ C322 -- C331 -- e232.
The collection of cells affected uniquely identifies the move. The cell whose

k index is changed first is of no importance as long as the cell belongs to the
collection in question. Note that the same move is generated regardless of whether

4O

TABLE IV. The Three Configurations of a Solution

D. MAGOS

i / j 1 2 3 4 j / k 1 2 3 4 k / i 1 2 3 4

1 2 3 4 1 1 4 1 3 2 1 4 3 2 1

2 4 2 1 3 2 3 2 1 4 2 1 2 3 4

3 3 1 2 4 3 2 3 4 1 3 2 4 1 3

4 1 4 3 2 4 1 4 2 3 4 3 1 4 2

the move starts from cell (2,2), or (3,2), or (3,3), or (2,3). Therefore the move is
completely defined by the pair of indices swapped and one of the cells it affects.
For example, the move that changes 1 to 2 and vice versa starting from cell (4,1)
is distinct from the move we described because it affects a different configuration
of cells regardless of the fact that the same pair of k indices are swapped. The
cardinality of the set S(x) (I S(x)I) of all distinct moves that can be applied to
x can be approximated by an upper and a lower bound. For each cell there are
n - 1 possible substitutions between its current content and the elements of set
K \ k(i, j). The total number of substitutions is nZ(n - 1). The number of cells
affected by a move is between 4 and 2n. Therefore

n 2 (n - 1) ~>1 S (g) I > n (n - 1) (4)

4 2

It is not always necessary to re-evaluate all moves when transitioning to a new
solution. With respect to L 1 consider the move that swaps 3 and 4 by setting k(1,2)
= 4. Feasibility is restored by setting k(4,2) = 3, k(3,4) = 4, k(1,3) = 3. The same
set of variables are led to zero and one regardless of L 1 or L2. Therefore the value
of the move is valid for both solutions. It is easy to see that only moves that swap
k and 1, and k and 2 (for every k E K\{1 ,2}) need be re-evaluated for L2. All
other moves are valid for both solutions. The only exception is the move that leads
from L 1 to L2, which must be replaced by its reverse move. Note that other moves
that swap 1 and 2 are valid for both solutions since they refer to different variables
than the ones affected by the application of the move. To take advantage of the fact
that only a limited number of moves need re-evaluating at each iteration a list of
candidate moves is maintained throughout the search. For the starting solution all
moves are evaluated and enter the list. At each iteration, after a move is selected,
the list is updated to provide the new candidate moves for the new solution.

We have expressed every solution of PP3 as a Latin square whose cells have
as row and column co-ordinates the elements of the sets I and J , and as cell
contents the elements of set K. We denote this configuration K (I, J). By circularly
exchanging the sets two more configurations are derived. According to the notation
used these are I(J, K) and J(K, I). Therefore a solution of PP3 corresponds to
three Latin squares, each belonging to a different configuration. Table IV illustrates
these three Latin squares for the solution of Table I.

The three configurations constitute three different "views" of the same solution.
Moves can now be evaluated for all three Latin squares, thus enlarging the set S(x).

SEARCH FOR THE PLANAR THREE-INDEX ASSIGNMENT PROBLEM 41

Most importantly, the search becomes more flexible and sensitive because moves
that swap pairs of indices of all three sets are considered at every iteration. Therefore
the search can arrive at a solution by applying a move that swaps il and i2 (where
i l, i2 C1) and then continue with a move that swaps elements of another set. The
search is now able to reveal solutions that could not be reached otherwise given the
starting solution. Additionally, certain solutions considered remote when a single
type of Latin square is used can now be found in few iterations. The performance
of our algorithm increased dramatically when moves for the three Latin-square
configurations were considered. Unfortunately the computational burden increased
as well. However, because only few moves need re-evaluating at each iteration, and
because the evaluation of a move is done much faster in a manner to be described
next, the increase in computing time was small.

Most of the time the move evaluation routine searches along rows and columns
of the Latin square for the cells that contain the indices to be swapped. This can be
avoided by exploiting the information supplied by the three alternative configura-
tions of a solution. We define i(j, k) the content of the cell (j, k) belonging to the
configuration l(J, K). j(k, i) is defined accordingly for configuration J(K, 1). We
consider again the move that leads from L 1 to L2. The move consists of swapping
1 and 2 and initially sets k(2,2) = 1. According to the procedure described above,
we search along the same column (3' = 2) for a cell with content index k = 1 to
be changed to k = 2. The index that gives the row co-ordinate of the cell can be
found from the configuration I(d, K). It is i(j = 2, k = 1) = 3. We set k(3,2) = 2
and search along the same row (i = 3) for a 2 to be changed to 1. The j index in
question can be found in the cell (k = 2, i = 3) of J(K, I). This is j (2, 3) = 3. We
set k(3, 3) = 1 and continue locating i and j indices from configurations [(J, K)
and J(K, 1) respectively. The move is completed when a cell with the same i index
as the starting cell is reached. The same procedure is used to evaluate moves of
any configuration.

When moves for a single Latin-square configuration are evaluated, we have
shown that only a part of S(x) needs re-evaluating at each iteration. The same goes
for the case of the three configurations. Let z 1, z2 denote two neighbor solutions,
and s the move that transitions from xl to x2 (s(xl) = x2). Then some of the
moves applicable for x 1 are valid for x2 as well. We denote K(s) the set of k
indices of the variables affected by the application of ~. The sets l(s) and J(s) are
defined accordingly. Moves that swap kl and k2 (for every kl, I~2cK\ K(s)), need
not be re-evaluated for z2. Similarly we need not re-evaluate moves that swap i l
and i2 (for every il, i2EI \ I(s)), and j l and j2 (for every jl,j2EJ \ J(s)). The
rule embedded in our algorithm re-evaluates all other moves. This is done with
the knowledge that there are further moves that need not be evaluated at x2. For
example, if s swaps a and b (a, b C Z, where Z denotes any of I , J, K) all other
moves that swap the same elements remain valid for z2. However, because in
practise the moves that are unnecessarily evaluated are few, we have chosen not to
adopt a more elaborate approach.

4 2 D. MAGOS

4. Tabu Search for PP3

The implementation of the tabu notion is of primary importance to every TS
procedure. We have experimented with three alternative definitions of the tabu
move. All these definitions are given with respect to x°(s), which denotes the set
of variables led to zero by the application of move s to the solution x.

(a) A move is tabu if it sets one or more variables of x°(s) to one.

(b) Let xl(s) denote the set of variables of x°(s) that have the value of one at
the current iteration. These variables are set to one by a move/moves applied
after move s. A move is tabu if it sets all variables of the set x°(s) - x 1 (s) to
one. Note that if at least one variable of x°(s) has the value of zero we cannot
return to solution x.

(c) A move is tabu if it sets all variables of x°(~) to one at the same iteration. This
definition refers to the move that reverses s directly (at one iteration). This is
a special case of rule (b) with x l(s) empty.

Rule (c) is a rather weak implementation of the tabu notion. It can be easily
shown that it cannot prevent cycling. Let x 1 denote the solution at iteration t. The
move s t is selected and yields the solution x2 (s t (x l) = x2) at iteration t + 1. The
move selected at iteration t + 1 cannot lead back to x 1. Let x3 denote the solution
at iteration t + 2 (J + l (x 2) = x3, x3 7~ x 1). If none of the variables of x 1°(.~ t) is
set to one at x3 then s t+2 cannot yield x 1. However, if at least one of the variables
of x l°(s t) is present at x3 then the rule does not prevent s t+2 from setting the rest
of the variables of x l°(s t) to one as well. Therefore it is possible that x 1 - x4
(st+2(x3) = x4). Even if x 1 ¢ x4, revisiting of x 1 may occur at a future iteration,
especially if x 1 is a "deep" local optimum. A situation like this can never occur
if (a) or (b) are used. Rule (b) ensures that not all variables of x°(s) will take the
value of one during the next m iterations since the application of s. Rule (a) is
more restrictive, not allowing any variable of x°(s) to take the value of one at the
future m iterations.

Rule (b) proved superior to the rest in terms of the quality of the solutions
produced. Rule (a) renders many moves tabu at each iteration, confining the search
to a poor exploration of the solutions' space. On the other hand, rule (c) in a
great number of cases proved incapable of directing the search away from a local
optimum.

A very important parameter of the TS procedure is the size of the tabu list
(m). We have repeatedly solved the same set of problems using each time a
different value for m. The results showed that the procedure was highly sensitive
to different m values. To make the procedure more robust we adopted a strategy
that modifies the tabu list size throughout the course of the search. The value
of m is systematically varied every 2n iterations since the last change or 2.5n
iterations since x b ~ t was last updated, following the sequence { 1.15n, n, 0.85n }.
The sequence is repeated as many times as necessary until the end of the search.

SEARCH FOR THE PLANAR THREE-INDEX ASSIGNMENT PROBLEM 43

Tabu lists of variable size have been efficiently employed in the framework of
several TS applications (Hertz and de Werra, 1990; Tailard, 1990).

In addition to the short-term memory our algorithm incorporates a frequency-
based memory used to diversify the search to regions where improved solutions can
be found. Frequency-based memory functions have been employed in a variety of
TS applications. Laguna and Glover, (1993a) and Chakrapani and Skorin-Kapov
(1993) are two such applications where the frequency-based memory has been
adopted in rather different settings for the purpose of diversifying the search.

Our algorithm consists of three phases which are iteratively executed. In the first
phase the moves are selected with respect to the short-term memory only. Then an
intensification loop is entered (second phase) during which the first phase is exe-
cuted again using z b~s~ as the initial solution. The loop is exited if no improvement
of X best is achieved. During the first two phases for every variable xijk a counter
rrtij k is maintained, indicating the number of solutions this variable occured to as
a percentage of the total number of solutions visited by the search. In the third
phase, if no admissible (i.e. non-tabu) improving moves exist, moves that intro-
duce variables of low mijk value (frequency) are favored. More precisely, for every
admissible non-improving move the average frequency of the variables it sets to
one is calculated. Only ten percent of the moves, the ones with the smaller average
frequencies, are considered. In this way a move that introduces a high frequency
variable into the solution is not excluded by default. However, in order to be con-
sidered for selection the move must also introduce variables of low frequency so as
to achieve a low average frequency. The move that degrades the objective function
the least is selected. The procedure is repeated until a stopping rule is satisfied. The
number of iterations spent at each phase of the search is given to the algorithm as
input. Alternatively, the number of iterations can be considered as a function of the
problem's size.

5. Computational Experience

Our algorithm was programmed in C. Computational results demonstrated in this
chapter were obtained from an "IBM 386-sx" class computer running at 16 MHz
with no mathematic co-processor. The code was compiled using Borland Turbo
C v2.00 compiler and run under Microsoft DOS v5.00. Unfortunately there are no
test problems available from the literature. We have randomly generated two sets
of problems with costs integers drawn from a uniform distribution in the interval
[1,100]. Results illustrated were obtained with a cut-off limit of 1500 iterations for
every TS implementation.

The first problem set consists of twenty-five problems, five problems for each
value of n, with n = 5,6,...9. The problems were solved optimally (column OPT,
Table V) by the algorithm described in Magos and Miliotis (1994). Two versions of
our algorithm were tested, namely TS1 and TS2. TS1 is based on short-term mem-
ory only. TS2 embeds the intensification and diversification strategies described

44

TABLE V. Computational Experience (I)

D. MAGOS

N OPT LS TS 1 TS2 TS 1 TS2

% GAP SECS % GAP SECS % GAP SECS % GAP % GAP

5
633 27.96 2 0.00 52 0.00 70 2.52 2.52

811 7,76 2 3.94 49 3.94 69 0.00 0.00

863 13,78 1 3.24 48 3.24 71 0.00 0.00

663 21,56 2 6,18 47 6.18 70 0.00 0.00

800 8,37 1 0.12 8 1 0.12 71 0.00 0.00

782 19.95 2 0.00 80 0.00 112

934 14.56 3 0.00 83 0.00 115

1058 11.72 2 0,00 84 0.00 113

898 9.24 1 0.00 82 0.00 119

955 7.64 1 0.00 85 0,00 120

1319 29.11 1 14.03 116 13.87 173 0.00 0,00

1268 24.36 1 21.37 118 20.90 175 0.00 0.00

1195 30.62 2 19.16 115 19.16 149 0.58 0.00

1121 51.38 3 25.25 117 20.61 146 0.00 0.00

1252 39.85 2 20.93 115 15.58 176 0.00 0.00

1528 21,40 2 1.57 172 0.13 216

1467 10.16 3 0.00 171 0.00 215

1486 13.39 2 0.00 175 0.00 217

1474 22.25 2 0.00 160 0.00 273

1484 12.13 2 1.68 173 1.68 215

1685 27.18 2 1.78 234 1,36 298

1882 22.64 3 2.71 237 0.63 311

1907 9.49 3 1.31 235 0.73 300
1748 25.40 1 0.00 237 0.00 306

1671 21.66 3 0.83 240 0.83 391

in the previous section. After some experimentation with the problems at hand
we have allowed 350 iterations for the first phase of the procedure. Each time the
search is intensified starting from a new x b~t = 175 (350/2) additional iterations
are allowed. The diversification phase is given 75 (350/5 ~ 75) iterations. For
comparison purposes an implementation of the local search method (LS) is also
tested. Results are summarized in Table V.

Columns SECS illustrate the CPU times in seconds. For each algorithm column
%GAP illustrates the quantity (100×(z* - z ° P t) / z ° V t) , where z* denotes the
function value of the solution produced by the algorithm, and z °pt the value of

SEARCH FOR THE PLANAR THREE-INDEX ASSIGNMENT PROBLEM

TABLE VI. Computational Experience (II)

N LS TS1 TS2
FV SECS FV SECS FV SECS

10

11

12

13

14

2735 6 2185 320 2253 414
3047 4 2089 319 2052 540
2539 6 2061 320 1964 433
2553 6 2081 314 2055 456
2754 4 1940 321 1940 459

4360 4 3796 399 3520 462
4279 6 3838 393 3786 451
4023 3 3415 395 3415 527
4314 3 3621 399 3751 460
4140 4 3689 400 3689 549

3544 14 2770 734 2770 1003
3668 14 2856 574 2867 1008
3886 12 2957 545 2895 711
3834 12 2683 556 2641 867
3788 13 2768 551 2717 856

5815 6 4887 643 4887 751
5463 8 5194 637 5025 805
5652 5 4791 647 4895 744
5531 9 5144 644 5144 878
5782 6 5133 649 5133 893

4722 21 3366 880 3431 1545
5333 19 3684 893 3598 1407
4967 26 3620 873 3649 1390
4709 25 3481 899 3258 1546
4583 26 3260 895 3294 1543

45

the optimum. Columns LS, TS1, TS2 show results produced by the corresponding
algorithms when starting from the random solution

k(i, j) = ~.n~f(i+j-1)m°d notherwise ff (i+j-1)mod n>0 (5)

The problems of the second set are greater in size. The set consists o f twenty-five

problems, five problems for each value o f n, with n = 10,11 14. Unfortunately,

because optimum solutions could not be obtained within a reasonable time limit,

the problems were solved only suboptimally. The solutions obtained by LS, T S l

and TS2 are illustrated in Table VI (columns FV). The starting solutions were
produced by (5).

4 6 D. MAGOS

In general, it is to be noted that TS procedures are by far superior to the LS
with respect to the quality of the solutions obtained. The difference in CPU times
is justified, since LS terminates as soon as it cannot find an improving move. In
the case of TS local optimality is not a barrier, and the procedures exhaust all
1500 iterations. Comparing the two TS procedures, TS2 produces better solutions
than TS1, thus confirming the important role of intensification and diversification
strategies. Better solutions come with an increase in CPU times mainly due to the
diversification phase of TS2, where most of the computation is carried out with
real numbers (calculation of average frequencies). We note that for some problems
of the second set TS1 managed to find a better solution than TS2. This is mainly
due to the small cut-off limit adopted (1500 iterations), which terminated the
search rather prematurely for problems of bigger dimensions. For these problems
additional diversification of the search is needed for a fuller exploration of the
solutions' space.

Conspicuous exceptions to the good performance of TS are problems of size
5 and 7. For every problem of size 5 and 7 we tested we found that the same
solutions kept on appearing again and again. Increasing the size of the tabu list
only increased the period of appearance of these solutions. After some unsuccessful
experimentation with the values of the procedures' parameters (tabu list size,
number of iterations given to each search phase of TS2) we focused on the structure
of the solutions visited. We observed that the number of candidate moves remained
constant at each iteration. What is more interesting, the number of variables affected
by any candidate move was always 2n. That is, the search only visited solutions
which differed from all their neighbor solutions in exactly 2n variables. We notice
that the starting solutions for problems of size 5 and 7 described by (5) have the
same property. As pointed out in Section 3, the number of variables (cells) affected
by a move ranges between 4 and 2n. Therefore a great number of solutions remain
out of reach when starting from solutions with this particular property.

We ran into the same situation when we dealt with problems of size 11 and 13.
This is reflected on the results in Table VI. For problems of size 11 and 13 LS, TS1
and TS2 produce solutions that are worse in terms of function value than solutions
produced by the same procedures for problems of bigger size. The fact that this
situation occurs in problems of prime size merits of further theoretical study.

Such a situation is a signal in TS for the necessity to apply a diversification
strategy that drives the solution away from the entrapping region. In our case, it
sufficed simply to avoid the entrapping structure at the start of the search. After
some experimentation we were able to construct solutions, one of size 5 and one of
7, that did not differ by exactly 2n variables from every neighbor solution. These
were used as initial solutions for all problems of size 5 and 7. Results are illustrated
in columns TSI* TS2*. We see that for all problems but one TS2 managed to find
the optimum solution. For the first problem of size 5 the optimum is discovered
when starting from the solution described by (5). This indicates that solutions with
the property previously analyzed form a "closed" set. If the search starts from a

SEARCH FOR THE PLANAR THREE-INDEX ASSIGNMENT PROBLEM 47

solution of the set then all solutions discovered belong to this set. I f the starting
solution does not be long to the set then no solution of the set is visited. This

explains the repetit ion of the same solutions. Given that only solutions of the set

are visited, the search repeats the best such solutions as soon as the moves that
produce them lose their tabu status. An interesting area of future research is the

study of a m o v e mechan i sm that will destroy and rebuild the feasibili ty of the
solutions in such a way as to overcome the entrapment of the search in regions

that exclusively consist o f solutions of the particular structure identified here. The
strategic oscillation approach of TS, which destroys and rebuilds selected parts of a
solution in alternating waves (or similarly drives the solution infeasible and feasible
in coordinated alternation) provides a natural basis for pursuing this goal.

In summary, TS is a mos t promis ing tool for obtaining near opt imal solutions for

PP3. The core of the TS procedures presented is the move generation mechan ism
which exploits the Latin-square structure of the solutions. Computat ional experi-

ence indicates that the intensification and diversification strategies contribute to the

effectiveness of the approach. Due to hardware limitations, this is more obvious for
p rob lems of smaller size. As in similar studies the values of the search parameters

are determined with the help of some prel iminary experimentation.

References

Areibi S. and Vannelli A. (1994), Advanced Search Techniques for Circuit Partitioning, in Pardalos
R and Wolkowicz H. (eds.), Quadratic Assignment and Related Problems, DIMACS Series 16,
American Mathematical Society, 77-98.

Balas E. and Saltzman M.J. (1991), An algorithm for the three-index assignment problem, Operations
Research 39(1), 150-161.

Burkard R.E. and Frolich K. (1980), Some remarks on 3-dimensional assignment problems, Methods
Operations Research 36, 31-36.

Chakrapani J. and Skorin-Kapov J. (1993), Connection Machine Implementation of a Tabu Search
Algorithm for the Travelling Salesman Problem, Journal of Computing and Information Tech-
nology 1(1), 29-36.

Euler R., Burkard R.E., and Grommes R. (1986), On Latin Squares and the facial structure of related
polytopes, Discrete Mathematics 62, 155-181.

Frieze A.M. (1983), Complexity of a 3-dimensional assignment problem, European Journal of Oper.
Res. 13, 161-164.

Gilbert K.C. and Hofstra R.B. (March 1987), An algorithm for a class of three-dimensional assignment
problems arising in scheduling applications, liE Transactions, 29-33.

Glover E (1989), Tabu Search - Part I, ORSA Journal on Computing 1, 190-206.
Glover E (1990), Tabu Search - Part II, ORSA Journal on Computing 2, 4-32.
Glover E and Laguna M. (1993) Tabu Search, in Colin Reeves (ed.), Modern Heuristic Techniques

for Combinatorial Problems, Blackwell Scientific Publishing, 70-141.
Haley B. (1962), The solid transportation problem, Operations Research 10, 448-463.
Hertz A. and De Werra D. (1990), The Tabu Search Metaheuristic: How We Used It, Ann. Math. and

Artificial Intelligence 1, 111-121.
Laguna M. and Glover E (1993a), Bandwidth Packing: A Tabu Search Approach, Management

Science 39(4), 492-500.
Laguna M. and Glover E (1993b), Integrating Target Analysis and Tabu Search for Improved Schedul-

ing Systems, Expert Systems with Applications 6, 287-297.
Magos D. and Miliotis P. (1994), An Algorithm for the Planar Three-index Assignment Problem,

EuropeanJournalof Oper. Res 77, 141-153.

48 D. MAGOS

Osman I.H. (1993), Metastrategy Simulated Annealing and Tabu Search Algorithms for the Vehicle
Routing Problem, Annals of Operations Research 41,421-451.

Ryser J.H. (1963), Combinatorial Mathematics - The Carus Mathematical Monographs 14, Wiley,
New York.

Tailard E. (1990), Robust Tabu Search for the Quadratic Assignment Problem, Parallel Computh~g
17, 443-445.

Vlach M. (1967), Branch and bound method for the three-index assignment problem, Ekonomicko-
Matematiclcy Obzor 3, 181-191.

